Department of Computer
Science

Assessing Performance of Software
Defined Radios on Multicore Hardware

Nick Green, Ugo Buy Redge Bartholomew
Dept. of Computer Science Rockwell Collins
University of lllinois Cedar Rapids, lowa

Chicago, lllinois
12t June 2013

u Ic University of lllinois Department of Computer
at Chicago Copyright © University of lllinois at Chicago, 2013. Science

@
ﬂ.@ﬁDODDDO@ﬂ

* Not a free lunch—your software
must be multicore aware to
exploit hardware capabilities

.'ql

@
..DODODODDDD-

» |Is it worth using multicore hardware for SDR
applications?

0% 0°0°0°¢ 8"

U Radio — A mature radio framework with U
support

GNU Radio

the gnu software radioc

SDR Software Architecture

: : USRP
 Both OSSIE and GNU Radio are built on a Receiver
graph based framework j[

e An application consists of source, destination WBEM
and transform nodes Receiver
« Example — Source node receives a signal \ﬂ
from the USRP, transformed (e.g. by Amplifier
demodulation), and then played on the PC
speaker ﬁ
* Important observation — Each node can run in Audio
their own software thread Sink
u Ic ;Jtng;::s;tgonf lllinois Department of Coglcputerience

OSSIE Experiments

e Used OSSIE to simulate SDR execution, with each node
having its own thread

 Created set of simple graphs with custom ‘processor
blocks’, that perform simulated processor intensive
workload (i.e., Floating-Point Divisions)

 Workload was varied over a number of components and
graph throughput was recorded

u Ic University of lllinois Department of Computer
at Chicago Science

Ser. Proc
Ser. Proc

@
DGDDDDDDDODDO

Mux Proc Ser. Proc
Block Block

TX Demo: Generate packets at 1 ms
frequency (from OSSIE)

Serial Proc Block: repeat FP divisions

Mux Proc Block: same as above +
multiplexing

RX Demo: Receive packets at 1 ms
frequency (from OSSIE)

0% 0°0°0°¢ 8"

N1 N2 Mux N4 Dual+ Mono Mono+ Dual+/ Dual+/ Mono+/
(iter.) (iter.) (iter.) (iter.) (ms) (ms) (ms) Mono Mono+ Mono

1 1 1 1 1.20 1.20 1.20 1.00 1.00 1.00
1 1 1 1000 109 110 110 0.99 0.99 1.00
1 1 1 5000 548 548 549 1.00 1.00 1.00
e 1 1 5000 5000 o547 1095 1088 0.50 0.50 099
1000 1000 5000 1000 655 876 873 0.75 0.75 1.00
1000 1000 1 1 110 220 218 0.50 0.50 0.99
1000 1000 1 5000 548 781 765 0.71 0.72 1.00

5000 5000 5000 5000 1084 2153 2176 0.50 0.50 1.00

@@ GD DD DC:' DC.' gD @Eﬂ

Trace Options
= ["] Peak Hold

D Average
Avg Alpha: 0.1333

[7] Persistence
Persist Alpha: 0.1887
—Z.
[7] Trace A M
DTraceB Store
= Axis Options
B] I AT TN P | W 01| OO
a a] ! h I]] 1
" 3) 1 Ref Level: +|f -
C] Ul o PYIPHLY PR oS i v Lkt L &6
e frr——

Amplitude (d8)

to vary parameters

Process Workload: "1 00

Max Proc Threads: | 1

In Place Floating Point Division- 1 vs 4 Cores

\\ =41 Thread -1 Core

=i Threads - 1 Core

=ll—=1 Thread - 4 Cores

==le=» Threads - 4 Cores

0.2

u T T T T T T 1
0 10000 20000 30000 40000 20000 20000 70000

Overall Workload

0% 0°0°0°¢ 8"

Intra-component
Parallelism

Processor
Block

(workload
split between
2 threads)

Processing Block into multiple
blocks (architectural advantage)

Inter-component
Parallelism

Processor
Block
Processor
Block

In place FP Division

10000

20000

30000 40000
Overall Workload

S50000

60000

FOooo

=f=—1 Thread
=l—2 Threads
=i=3 Threads
=i Threads
=—t=1 Component
=2 Components

==t==3 Components

——d Components

GNU Radio Observations

 Unexpected degradation in case of inter-component
parallelism vs. intra-component

 [ntuition would say there is an overhead with inter-
component transitions. However, after profiling, the culprit
was OUR processing block!

« High floating point division workload did poorly when
processing was split among components

u Ic University of lllinois Department of Computer
at Chicago Science

Simulation Operation

In place floating point
division

Integer add/subtract

Integer array reversal
Dynamic memory alloc.

0% 0°0°0°¢ 8"

Observation

Good performance with intra-component parallelism,
degraded with inter-component

Optimal performance gains achieved
Substantial gains limited to 3 thread on quad core

Severely degraded when multiple threads used for
allocation

® ® 0 O
.DDDDODOQ.

e Our test dashboard was very helpful in finding what
worked, what didn’t, and limitations

0% 0°0°0°¢ 8"

nolomew rgbartho@rockwellco

