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* Not a free lunch—your software
must be multicore aware to
exploit hardware capabilities
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» |Is it worth using multicore hardware for SDR
applications?
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U Radio — A mature radio framework with U
support

GNU Radio

the gnu software radioc




SDR Software Architecture

: : USRP
 Both OSSIE and GNU Radio are built on a Receiver
graph based framework j[

e An application consists of source, destination WBEM
and transform nodes Receiver
« Example — Source node receives a signal \ﬂ
from the USRP, transformed (e.g. by Amplifier
demodulation), and then played on the PC
speaker ﬁ
* Important observation — Each node can run in Audio
their own software thread Sink
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OSSIE Experiments

e Used OSSIE to simulate SDR execution, with each node
having its own thread

 Created set of simple graphs with custom ‘processor
blocks’, that perform simulated processor intensive
workload (i.e., Floating-Point Divisions)

 Workload was varied over a number of components and
graph throughput was recorded
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Ser. Proc
Ser. Proc
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Mux Proc Ser. Proc
Block Block

TX Demo: Generate packets at 1 ms
frequency (from OSSIE)

Serial Proc Block: repeat FP divisions

Mux Proc Block: same as above +
multiplexing

RX Demo: Receive packets at 1 ms
frequency (from OSSIE)
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N1 N2 Mux N4 Dual+ Mono Mono+ Dual+/ Dual+/ Mono+/
(iter.) (iter.) (iter.) (iter.) (ms) (ms) (ms) Mono Mono+ Mono

1 1 1 1 1.20 1.20 1.20 1.00 1.00 1.00
1 1 1 1000 109 110 110 0.99 0.99 1.00
1 1 1 5000 548 548 549 1.00 1.00 1.00
e 1 1 5000 5000 o547 1095 1088 0.50 0.50 099
1000 1000 5000 1000 655 876 873 0.75 0.75 1.00
1000 1000 1 1 110 220 218 0.50 0.50 0.99
1000 1000 1 5000 548 781 765 0.71 0.72 1.00

5000 5000 5000 5000 1084 2153 2176 0.50 0.50 1.00
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In Place Floating Point Division- 1 vs 4 Cores

\\ =41 Thread -1 Core
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Intra-component
Parallelism

Processor
Block

(workload
split between
2 threads)

Processing Block into multiple
blocks (architectural advantage)

Inter-component
Parallelism

Processor
Block
Processor
Block




In place FP Division
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GNU Radio Observations

 Unexpected degradation in case of inter-component
parallelism vs. intra-component

 [ntuition would say there is an overhead with inter-
component transitions. However, after profiling, the culprit
was OUR processing block!

« High floating point division workload did poorly when
processing was split among components
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Simulation Operation

In place floating point
division

Integer add/subtract

Integer array reversal
Dynamic memory alloc.

0% 0°0°0°¢ 8"

Observation

Good performance with intra-component parallelism,
degraded with inter-component

Optimal performance gains achieved
Substantial gains limited to 3 thread on quad core

Severely degraded when multiple threads used for
allocation
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e Our test dashboard was very helpful in finding what
worked, what didn’t, and limitations
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